6.12 Various ways of estimation

  1. Typical Estimation
reg1 <- lm(Y ~ treat:period + treat + period, data)
summary(reg1)
## 
## Call:
## lm(formula = Y ~ treat:period + treat + period, data = data)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -18.830  -3.455  -0.093   3.467  16.072 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   2.95751    0.22379  13.216   <2e-16 ***
## treat         4.26159    0.31648  13.466   <2e-16 ***
## period       -0.07377    0.31648  -0.233    0.816    
## treat:period 19.95384    0.44757  44.583   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 5.004 on 1996 degrees of freedom
## Multiple R-squared:  0.8002, Adjusted R-squared:  0.7999 
## F-statistic:  2665 on 3 and 1996 DF,  p-value: < 2.2e-16
  1. Within Estimator
reg2 <- lm(Ytrans ~ D + period, data)
summary(reg2)
## 
## Call:
## lm(formula = Ytrans ~ D + period, data = data)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -18.830  -3.455  -0.093   3.467  16.072 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  0.03689    0.19376   0.190    0.849    
## D           19.95384    0.44746  44.594   <2e-16 ***
## period      -0.07377    0.31640  -0.233    0.816    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 5.003 on 1997 degrees of freedom
## Multiple R-squared:  0.6641, Adjusted R-squared:  0.6637 
## F-statistic:  1974 on 2 and 1997 DF,  p-value: < 2.2e-16
  1. First Difference
reg3 <- lm(Y_FD ~ D, FDdata)
summary(reg3)
## 
## Call:
## lm(formula = Y_FD ~ D, data = FDdata)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -32.074  -4.372   0.223   4.794  21.751 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) -0.07377    0.31216  -0.236    0.813    
## D           19.95384    0.44146  45.200   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 6.98 on 998 degrees of freedom
## Multiple R-squared:  0.6718, Adjusted R-squared:  0.6715 
## F-statistic:  2043 on 1 and 998 DF,  p-value: < 2.2e-16
  1. Imputation method

This traces the counterfactual (untreated potential outcome) of the treated group using paths of the untreated group. Using the first difference (or within transformation): \[\begin{equation} Y_{i2}(0) - Y_{i1}(0) = \theta_{2} - \theta_{1} + v_{i2}-v_{i1} \nonumber \\ \Delta Y_{it}(0) = \theta_t + \Delta v_{it} \end{equation}\]

where, \(\theta_{t-1}\) is normalized to 0. Estimate the above equation using only the untreated group and estimate \(\hat{\theta_t}\). This is the time trend in the untreated group. The parallel trend assumption states that the outcome in treated group would have moved in a similar way to the untreated group in absence of the treatment. So, let’s use \(\hat{\theta_t}\) to adjust for the pathway in the treated group and find the potential outcome in the treated group in absence of the treatment. Note that \(\hat{\theta_t} = \frac{1}{n_0}\sum_1^n (1-D_i) \Delta Y_{it}\).

\[\begin{equation} \hat{Y_{it}(0)} = Y_{it-1} + \hat{\theta_t} \end{equation}\]

Then write \(ATT_{imp}\) as:

\[\begin{equation} ATT_{imp} = \frac{1}{n_1}\sum_{1}^{n}D_{i}(Y_{it}-\hat{Y_{it}(0)}) \\ = \frac{1}{n_1}\sum_{1}^{n}D_{i}(Y_{it}-({Y_{it-1}+\hat{\theta_{t}}}) ) \\ = \frac{1}{n_1}\sum_{1}^{n}D_{i}(Y_{it}-({Y_{it-1}}) - \frac{1}{n_0}\sum_{1}^{n}(1-D_{i})(Y_{it}-({Y_{it-1}}) \\ = \frac{1}{n_1}\sum_{1}^{n}D_{i}\Delta Y_{it} - \frac{1}{n_0}\sum_{1}^{n}(1-D_{i}) \Delta Y_{it} \end{equation}\]

reg <- lm(Y_FD ~ period2, subset(FDdata, treat1 == 0))
FDdata$yhattreat = FDdata$Y1 +  reg[[1]][[1]]
FDdata$imp = FDdata$Y2 - FDdata$yhattreat
mean(FDdata$imp[FDdata$treat1 == 1])
## [1] 19.95384
  1. Frisch-Waugh Theorem